SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Activator

179

The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR) from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.

Concepts: DNA, Gene, Gene expression, Transcription, Transcription factor, RNA polymerase, Olfactory receptor neuron, Activator

36

Loss of protein and organelle quality control secondary to reduced autophagy is a hallmark of aging. However, the physiologic and molecular regulation of autophagy in long-lived organisms remains incompletely understood. Here we show that the Kruppel-like family of transcription factors are important regulators of autophagy and healthspan in C. elegans, and also modulate mammalian vascular age-associated phenotypes. Kruppel-like family of transcription factor deficiency attenuates autophagy and lifespan extension across mechanistically distinct longevity nematode models. Conversely, Kruppel-like family of transcription factor overexpression extends nematode lifespan in an autophagy-dependent manner. Furthermore, we show the mammalian vascular factor Kruppel-like family of transcription factor 4 has a conserved role in augmenting autophagy and improving vessel function in aged mice. Kruppel-like family of transcription factor 4 expression also decreases with age in human vascular endothelium. Thus, Kruppel-like family of transcription factors constitute a transcriptional regulatory point for the modulation of autophagy and longevity in C. elegans with conserved effects in the murine vasculature and potential implications for mammalian vascular aging.KLF family transcription factors (KLFs) regulate many cellular processes, including proliferation, survival and stress responses. Here, the authors position KLFs as important regulators of autophagy and lifespan in C. elegans, a role that may extend to the modulation of age-associated vascular phenotypes in mammals.

Concepts: DNA, Gene, Gene expression, Transcription, RNA, Transcription factor, Activator, Regulation

33

Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

Concepts: DNA, Protein, Gene expression, Bacteria, Transcription, Enzyme, Transcription factor, Activator

29

Hemophilia B, or the “royal disease,” arises from mutations in coagulation factor IX (F9). Mutations within the F9 promoter are associated with a remarkable hemophilia B subtype, termed hemophilia B Leyden, in which symptoms ameliorate after puberty. Mutations at the -5/-6 site (nucleotides -5 and -6 relative to the transcription start site, designated +1) account for the majority of Leyden cases and have been postulated to disrupt the binding of a transcriptional activator, the identity of which has remained elusive for more than 20 years. Here, we show that ONECUT transcription factors (ONECUT1 and ONECUT2) bind to the -5/-6 site. The various hemophilia B Leyden mutations that have been reported in this site inhibit ONECUT binding to varying degrees, which correlate well with their associated clinical severities. In addition, expression of F9 is crucially dependent on ONECUT factors in vivo, and as such, mice deficient in ONECUT1, ONECUT2, or both exhibit depleted levels of F9. Taken together, our findings establish ONECUT transcription factors as the missing hemophilia B Leyden regulators that operate through the -5/-6 site.

Concepts: DNA, Gene expression, Transcription, Coagulation, Transcription factor, Activator, Haemophilia B, Factor IX

27

Plant shoots display indeterminate growth, while their evolutionary decedents, the leaves, are determinate. Determinate leaf growth is conditioned by the CIN-TCP transcription factors, which promote leaf maturation and are negatively regulated by miR319 in leaf primordia. Here we show that CIN-TCPs reduce leaf sensitivity to cytokinin (CK), a phytohormone implicated in inhibition of differentiation in the shoot. We identify the SWI/SNF chromatin remodeling ATPase BRAHMA (BRM) as a genetic mediator of CIN-TCP activities and CK responses. An interactome screen further revealed that SWI/SNF complex components including BRM preferentially interacted with basic-helix-loop-helix (bHLH) transcription factors and the bHLH-related CIN-TCPs. Indeed, TCP4 and BRM interacted in planta. Both TCP4 and BRM bound the promoter of an inhibitor of CK responses, ARR16, and induced its expression. Reconstituting ARR16 levels in leaves with reduced CIN-TCP activity restored normal growth. Thus, CIN-TCP and BRM together promote determinate leaf growth by stage-specific modification of CK responses.

Concepts: DNA, Photosynthesis, Genetics, Gene expression, Transcription factor, Activator, Plant morphology, Shoot

27

BRCA1 is closely related to the pathogenesis of breast cancer. The activity of BRCA1 promoter is regulated by transcriptional factors. The transcription factor Nrf2 (Nuclear factor-erythroid-2p45-related factor 2) is a potent transcriptional activator and plays a central role in inducible expression of many cytoprotective genes. In this report, we found that over-expression of Nrf2 stimulated BRCA1 expression, knockdown of Nrf2 attenuated BRCA1 expression. Nrf2 also interacted with CBP and p300 to form an active transcription complex, which could bind to the ARE (antioxidant response element) site on the BRCA1 promoter and activate its transcription by inducing histone acetylation. Our finding could lead to a better understanding of the development of breast cancer.

Concepts: DNA, Gene, Genetics, Gene expression, Transcription, Transcription factor, RNA polymerase, Activator

26

Autophagy as a conserved lysosomal/vacuolar degradation and recycling pathway is important in normal development and physiology, and defects in this process are linked to many kinds of disease. Because too much or too little autophagy can be detrimental, the process must be tightly regulated both temporally and in magnitude. Two parameters that affect this regulation are the size and the number of autophagosomes; however, although we know that the amount of Atg8 affects the size of autophagosomes, the mechanism for regulating their number has not been elucidated. The transcriptional induction and repression of the autophagy-related (ATG) genes is one crucial aspect of autophagy regulation, but the transcriptional regulators that modulate autophagy are not well characterized.

Concepts: DNA, Gene expression, Biology, RNA, Cellular differentiation, Activator, Regulation, Enzyme induction and inhibition

26

We demonstrate the utility of the surface enhanced Raman spectroscopy (SERS) to monitor conformational transitions in protein upon ligand binding. The changes in protein’s secondary and tertiary structure were monitored using amide and aliphatic/aromatic side chain vibrations. Changes in these bands are suggestive of the stabilization of the secondary and tertiary structure of transcription activator protein C in presence of Mg2+ ion, whereas the spectral fingerprint remained unaltered in the case of a mutant protein, defective in Mg2+ binding. The importance of the acidic residues in Mg2+ binding, which triggers an overall allosteric transition in the protein, is visualized in the molecular model. The present study, a first of its kind, thus opens up avenues towards the application of SERS as a potential tool for gaining structural insights into the changes occurring during conformational transitions in proteins.

Concepts: Proteins, Protein, Gene expression, Transcription, Amino acid, Molecular biology, Protein structure prediction, Activator

24

HsfB1 is a central regulator of heat stress response and functions dually as transcriptional co-activator of HsfA1a and as general repressor in tomato. HsfB1 is efficiently synthesized during onset of heat stress and rapidly removed in course of attenuation during recovery phase. Initial results point to a complex regime modulating HsfB1 abundance involving the molecular chaperone Hsp90. However, the molecular determinants affecting HsfB1 stability needed to be established. We provide experimental evidence that DNA-bound HsfB1 is efficiently targeted for degradation when active as transcriptional repressor. Manipulation of the DNA-binding affinity by mutating the HsfB1 DNA-binding domain directly influences the stability of the transcription factor. During heat stress HsfB1 is stabilized, probably due to co-activator complex formation with HsfA1a. The process of HsfB1 degradation involves nuclear localized Hsp90. The molecular determinants of HsfB1 turnover identified in here are so far seemingly unique. A mutational switch of the R/KLFGV repressor motif’s arginine and lysine implies that the abundance of other R/KLFGV type Hsfs, if not other transcription factors as well, might be modulated by a comparable mechanism. Thus, we propose a versatile mechanism for strict abundance control of the stress-induced transcription factor HsfB1 for the recovery phase and this mechanism constitutes a form of transcription factor removal from promoters by degradation inside the nucleus. This article is protected by copyright. All rights reserved.

Concepts: DNA, Protein, Gene expression, Promoter, Transcription, Transcription factor, RNA polymerase, Activator

24

The phytohormone ABA plays a major role during plant development, e.g. seed maturation and seed germination, and during adaptation to abiotic stresses like stomatal aperture regulation. The three closely related WRKY transcription factors WRKY18, WRKY40 and WRKY60 function in ABA signal transduction. We recently demonstrated that WRKY18 and WRKY40 but not WRKY60 localize to nuclear bodies in A. thaliana mesophyll protoplasts. WRKY40, a negative regulator of ABA-dependent inhibition of seed germination, relocalizes from PNBs to the nucleoplasm in the presence of ABA in a dynamic and phosphorylation-dependent manner. We propose that subnuclear relocalization of WRKY40 might constitute a new regulatory mechanism of ABA-dependent modulation of transcription factor activity.

Concepts: DNA, Genetics, Gene expression, Transcription factor, Activator, Seed, Plant morphology, Germination