SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Actinopterygii

215

Here, we document in-vivo bite forces recorded from wild piranhas. Integrating this empirical data with allometry, bite simulations, and FEA, we have reconstructed the bite capabilities and potential feeding ecology of the extinct giant Miocene piranha, Megapiranha paranensis. An anterior bite force of 320 N from the black piranha, Serrasalmus rhombeus, is the strongest bite force recorded for any bony fish to date. Results indicate M. paranensis' bite force conservatively ranged from 1240-4749 N and reveal its novel dentition was capable of resisting high bite stresses and crushing vertebrate bone. Comparisons of body size-scaled bite forces to other apex predators reveal S. rhombeus and M. paranensis have among the most powerful bites estimated in carnivorous vertebrates. Our results functionally demonstrate the extraordinary bite of serrasalmid piranhas and provide a mechanistic rationale for their predatory dominance among past and present Amazonian ichthyofaunas.

Concepts: Fish, Predation, Vertebrate, Gnathostomata, Actinopterygii, Piranha, Characidae, Serrasalminae

177

The Ginglymodi is one of the most common, though poorly understood groups of neopterygians, which includes gars, macrosemiiforms, and “semionotiforms.” In particular, the phylogenetic relationships between the widely distributed “semionotiforms,” and between them and other ginglymodians have been enigmatic. Here, the phylogenetic relationships between eight of the 11 “semionotiform” genera, five genera of living and fossil gars and three macrosemiid genera, are analysed through cladistic analysis, based on 90 morphological characters and 37 taxa, including 7 out-group taxa. The results of the analysis show that the Ginglymodi includes two main lineages: Lepisosteiformes and †Semionotiformes. The genera †Pliodetes, †Araripelepidotes, †Lepidotes, †Scheenstia, and †Isanichthys are lepisosteiforms, and not semionotiforms, as previously thought, and these taxa extend the stratigraphic range of the lineage leading to gars back up to the Early Jurassic. A monophyletic †Lepidotes is restricted to the Early Jurassic species, whereas the strongly tritoral species previously referred to †Lepidotes are referred to †Scheenstia. Other species previously referred to †Lepidotes represent other genera or new taxa. The macrosemiids are well nested within semionotiforms, together with †Semionotidae, here restricted to †Semionotus, and a new family including †Callipurbeckia n. gen. minor (previously referred to †Lepidotes), †Macrosemimimus, †Tlayuamichin, †Paralepidotus, and †Semiolepis. Due to the numerous taxonomic changes needed according to the phylogenetic analysis, this article also includes formal taxonomic definitions and diagnoses for all generic and higher taxa, which are new or modified. The study of Mesozoic ginglymodians led to confirm Patterson’s observation that these fishes show morphological affinities with both halecomorphs and teleosts. Therefore, the compilation of large data sets including the Mesozoic ginglymodians and the re-evaluation of several hypotheses of homology are essential to test the hypotheses of the Halecostomi vs. the Holostei, which is one of the major topics in the evolution of Mesozoic vertebrates and the origin of modern fish faunas.

Concepts: Evolution, Species, Phylogenetic tree, Phylogenetics, Cladistics, Computational phylogenetics, Clade, Actinopterygii

174

Since Darwin, biologists have been struck by the extraordinary diversity of teleost fishes, particularly in contrast to their closest “living fossil” holostean relatives. Hypothesized drivers of teleost success include innovations in jaw mechanics, reproductive biology and, particularly at present, genomic architecture, yet all scenarios presuppose enhanced phenotypic diversification in teleosts. We test this key assumption by quantifying evolutionary rate and capacity for innovation in size and shape for the first 160 million y (Permian-Early Cretaceous) of evolution in neopterygian fishes (the more extensive clade containing teleosts and holosteans). We find that early teleosts do not show enhanced phenotypic evolution relative to holosteans. Instead, holostean rates and innovation often match or can even exceed those of stem-, crown-, and total-group teleosts, belying the living fossil reputation of their extant representatives. In addition, we find some evidence for heterogeneity within the teleost lineage. Although stem teleosts excel at discovering new body shapes, early crown-group taxa commonly display higher rates of shape evolution. However, the latter reflects low rates of shape evolution in stem teleosts relative to all other neopterygian taxa, rather than an exceptional feature of early crown teleosts. These results complement those emerging from studies of both extant teleosts as a whole and their sublineages, which generally fail to detect an association between genome duplication and significant shifts in rates of lineage diversification.

Concepts: Evolution, Phylogenetics, Clade, Extinction, Actinopterygii, Teleostei, Neopterygii, Holostei

171

The relationship between growth rate and environmental space is an unresolved issue in teleosts. While it is known from aquaculture studies that stocking density has a negative relationship to growth, the underlying mechanisms have not been elucidated, primarily because the growth rate of populations rather than individual fish were the subject of all previous studies. Here we investigate this problem in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling form (surface fish) and several blind cave-dwelling (cavefish) forms. Surface fish and cavefish are distinguished by living in spatially contrasting environments and therefore are excellent models to study the effects of environmental size on growth. Multiple controlled growth experiments with individual fish raised in confined or unconfined spaces showed that environmental size has a major impact on growth rate in surface fish, a trait we have termed space dependent growth (SDG). In contrast, SDG has regressed to different degrees in the Pachón and Tinaja populations of cavefish. Mating experiments between surface and Pachón cavefish show that SDG is inherited as a dominant trait and is controlled by multiple genetic factors. Despite its regression in blind cavefish, SDG is not affected when sighted surface fish are raised in darkness, indicating that vision is not required to perceive and react to environmental space. Analysis of plasma cortisol levels showed that an elevation above basal levels occurred soon after surface fish were exposed to confined space. This initial cortisol peak was absent in Pachón cavefish, suggesting that the effects of confined space on growth may be mediated partly through a stress response. We conclude that Astyanax reacts to confined spaces by exhibiting SDG, which has a genetic component and shows evolutionary regression during adaptation of cavefish to confined environments.

Concepts: Evolution, Cortisol, Actinopterygii, Mexican tetra

170

The actinopterygians comprise nearly one-half of all extant vertebrate species and are very important for human well-being. However, the phylogenetic relationships among certain groups within the actinopterygians are still uncertain, and debates about these relationships have continued for a long time. Along with the progress achieved in sequencing technologies, phylogenetic analyses based on multi-gene sequences, termed phylogenomic approaches, are becoming increasingly common and often result in well-resolved and highly supported phylogenetic hypotheses. Based on the transcriptome sequences generated in this study and the extensive expression data currently available from public databases, we obtained alignments of 274 orthologue groups for 26 scientifically and commercially important actinopterygians, representing 17 out of 44 orders within the class Actinopterygii. Using these alignments and probabilistic methods, we recovered relationships between basal actinopterygians and teleosts, among teleosts within protacanthopterygians and related lineages, and also within acanthomorphs. These relationships were recovered with high confidence.

Concepts: Species, Fish, Phylogenetics, Vertebrate, Chordate, Actinopterygii, Osteichthyes, Teleostei

168

In this study, for the first time, both neuropeptides isotocin (IT) and arginine vasotocin (AVT) have been identified and measured in urophysis, the neurohaemal organ of the caudal neurosecretory system of teleost fish. So far, AVT, but not IT, was quantified by radioimmunoassay (RIA) in urophysis of several fish species. We have used high-performance liquid chromatographic assay with fluorescence detection (HPLC-FL) preceded by solid-phase extraction (SPE) and liquid chromatography-electrospray ionization triple-quadrupole tandem mass spectrometry (LC-ESI MS/MS) technique to determine both neuropeptides in urophysis of three fish species. The efficiency of peptide’s SPE extraction was 79-85 %. In HPLC-FL method, the limits of detection (LOD) and quantification (LOQ) were estimated as 1.0 and 3.4 pmol/mL for IT and 0.25 and 2.20 pmol/mL for AVT. In LC-MS/MS method, LOD and LOQ were estimated as 0.4 and 1.2 pmol/mL for IT and 0.06 and 0.2 pmol/mL for AVT. The chromatographic methods are good alternative for RIA, because enable to measure both nonapeptides simultaneously in one sample. In round goby (Neogobius melanostomus), three-spined stickleback (Gasterosteus aculeatus) and sea bream (Sparus aurata), urophysial IT concentrations ranged between 0.056 and 0.678 pmol/mg tissue and AVT concentrations ranged between 0.0008 (or even below detection threshold) and 0.084 pmol/mg tissue.

Concepts: Mass spectrometry, Measurement, Analytical chemistry, Actinopterygii, Tandem mass spectrometry, Three-spined stickleback, Gasterosteiformes, Gilt-head bream

164

Alternative hypotheses had been advanced as to the components forming the elongate fin coursing along the ventral margin of much of the body and tail from behind the abdominal region to the posterior margin of the tail in the Electric Eel, Electrophorus electricus. Although the original species description indicated that this fin was a composite of the caudal fin plus the elongate anal fin characteristic of other genera of the Gymnotiformes, subsequent researchers proposed that the posterior region of the fin was formed by the extension of the anal fin posteriorly to the tip of the tail, thereby forming a “false caudal fin.” Examination of ontogenetic series of the genus reveal that Electrophorus possesses a true caudal fin formed of a terminal centrum, hypural plate and a low number of caudal-fin rays. The confluence of the two fins is proposed as an additional autapomorphy for the genus. Under all alternative proposed hypotheses of relationships within the order Gymnotiformes, the presence of a caudal fin in Electrophorus optimized as being independent of the occurence of the morphologically equivalent structure in the Apteronotidae. Possible functional advantages to the presence of a caudal fin in the genus are discussed.

Concepts: Electricity, Species, Fish, Eel, Actinopterygii, Electric eel, Electric fish, Gymnotiformes

160

Primordial germ cells (PGCs) arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser) have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT) assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts.

Concepts: Gene, Embryo, Developmental biology, Human migration, Germ cells, Puberty, Actinopterygii, Sturgeon

56

The teleost fishes represent over half of all extant vertebrates; they occupy nearly every body of water and in doing so, occupy a diverse array of environmental conditions. We propose that their success is related to a unique oxygen (O2) transport system involving their extremely pH-sensitive haemoglobin (Hb). A reduction in pH reduces both Hb-O2 affinity (Bohr effect) and carrying capacity (Root effect). This, combined with a large arterial-venous pH change (ΔpHa-v) relative to other vertebrates, may greatly enhance tissue oxygen delivery in teleosts (e.g., rainbow trout) during stress, beyond that in mammals (e.g., human). We generated oxygen equilibrium curves (OECs) at five different CO2 tensions for rainbow trout and determined that, when Hb-O2 saturation is 50% or greater, the change in oxygen partial pressure (ΔPO2) associated with ΔpHa-v can exceed that of the mammalian Bohr effect by at least 3-fold, but as much as 21-fold. Using known ΔpHa-v and assuming a constant arterial-venous PO2 difference (Pa-vO2), Root effect Hbs can enhance O2 release to the tissues by 73.5% in trout; whereas, the Bohr effect alone is responsible for enhancing O2 release by only 1.3% in humans. Disequilibrium states are likely operational in teleosts in vivo, and therefore the ΔpHa-v, and thus enhancement of O2 delivery, could be even larger. Modeling with known Pa-vO2 in fish during exercise and hypoxia indicates that O2 release from the Hb and therefore potentially tissue O2 delivery may double during exercise and triple during some levels of hypoxia. These characteristics may be central to performance of athletic fish species such as salmonids, but may indicate that general tissue oxygen delivery may have been the incipient function of Root effect Hbs in fish, a trait strongly associated with the adaptive radiation of teleosts.

Concepts: Hemoglobin, Oxygen, Carbon dioxide, Salmon, Salmonidae, Actinopterygii, Partial pressure, Niels Bohr

49

The head and anterior trunk region of most actinopterygian fishes is stiffened as, uniquely within vertebrates, the pectoral girdles have a direct and often strong connection through the posttemporal to the posterior region of the skull. Members of the mesopelagic fish family Stomiidae have their pectoral girdle separated from the skull. This connection is lost in several teleost groups, but the stomiids have an additional evolutionary novelty-a flexible connection between the occiput and the first vertebra, where only the notochord persists. Several studies suggested that stomiids engulf significantly large prey items and conjectured about the functional role of the anterior part of the vertebral column; however, there has been no precise anatomical description of this complex. Here we describe a unique configuration comprising the occiput and the notochordal sheath in Aristostomias, Eustomias, Malacosteus, Pachystomias, and Photostomias that represents a true functional head joint in teleosts and discuss its potential phylogenetic implications. In these genera, the chordal sheath is folded inward ventrally beneath its connection to the basioccipital and embraces the occipital condyle when in a resting position. In the resting position (wherein the head is not manipulatively elevated), this condyle is completely embraced by the ventral fold of the notochord. A manual manipulative elevation of the head in cleared and stained specimens unfolds the ventral sheath of the notochord. As a consequence, the cranium can be pulled up and back significantly farther than in all other teleost taxa that lack such a functional head joint and thereby can reach mouth gapes up to 120°.

Concepts: Vertebral column, Skull, Vertebra, Vertebrate, Anatomical terms of location, Chordate, Actinopterygii, Tetrapod