Discover the most talked about and latest scientific content & concepts.

Concept: Acoustics


Language is a distinguishing characteristic of our species, and the course of its evolution is one of the hardest problems in science. It has long been generally considered that human speech requires a low larynx, and that the high larynx of nonhuman primates should preclude their producing the vowel systems universally found in human language. Examining the vocalizations through acoustic analyses, tongue anatomy, and modeling of acoustic potential, we found that baboons (Papio papio) produce sounds sharing the F1/F2 formant structure of the human [ɨ æ ɑ ɔ u] vowels, and that similarly with humans those vocalic qualities are organized as a system on two acoustic-anatomic axes. This confirms that hominoids can produce contrasting vowel qualities despite a high larynx. It suggests that spoken languages evolved from ancient articulatory skills already present in our last common ancestor with Cercopithecoidea, about 25 MYA.

Concepts: Evolution, Language, Primate, Acoustics, Vowel, Old World monkey, Baboon, Guinea Baboon


We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak.

Concepts: Wave, Acoustics, Demonstration, Sound, Resonance, Vibration, Lattice


Concussions carry devastating potential for cognitive, neurologic, and socio-emotional disease, but no objective test reliably identifies a concussion and its severity. A variety of neurological insults compromise sound processing, particularly in complex listening environments that place high demands on brain processing. The frequency-following response captures the high computational demands of sound processing with extreme granularity and reliably reveals individual differences. We hypothesize that concussions disrupt these auditory processes, and that the frequency-following response indicates concussion occurrence and severity. Specifically, we hypothesize that concussions disrupt the processing of the fundamental frequency, a key acoustic cue for identifying and tracking sounds and talkers, and, consequently, understanding speech in noise. Here we show that children who sustained a concussion exhibit a signature neural profile. They have worse representation of the fundamental frequency, and smaller and more sluggish neural responses. Neurophysiological responses to the fundamental frequency partially recover to control levels as concussion symptoms abate, suggesting a gain in biological processing following partial recovery. Neural processing of sound correctly identifies 90% of concussion cases and clears 95% of control cases, suggesting this approach has practical potential as a scalable biological marker for sports-related concussion and other types of mild traumatic brain injuries.

Concepts: Central nervous system, Brain, Traumatic brain injury, Neurology, Acoustics, Sound, Concussion, Audio signal processing


Vocal learning, the substrate of human language acquisition, has rarely been described in other mammals. Often, group-specific vocal dialects in wild populations provide the main evidence for vocal learning. While social learning is often the most plausible explanation for these intergroup differences, it is usually impossible to exclude other driving factors, such as genetic or ecological backgrounds. Here, we show the formation of dialects through social vocal learning in fruit bats under controlled conditions. We raised 3 groups of pups in conditions mimicking their natural roosts. Namely, pups could hear their mothers' vocalizations but were also exposed to a manipulation playback. The vocalizations in the 3 playbacks mainly differed in their fundamental frequency. From the age of approximately 6 months and onwards, the pups demonstrated distinct dialects, where each group was biased towards its playback. We demonstrate the emergence of dialects through social learning in a mammalian model in a tightly controlled environment. Unlike in the extensively studied case of songbirds where specific tutors are imitated, we demonstrate that bats do not only learn their vocalizations directly from their mothers, but that they are actually influenced by the sounds of the entire crowd. This process, which we term “crowd vocal learning,” might be relevant to many other social animals such as cetaceans and pinnipeds.

Concepts: Mammal, Acoustics, Learning, Intelligence, Sound, Pinniped, Language acquisition, Vocal learning


Sound produced by fish spawning aggregations (FSAs) permits the use of passive acoustic methods to identify the timing and location of spawning. However, difficulties in relating sound levels to abundance have impeded the use of passive acoustics to conduct quantitative assessments of biomass. Here we show that models of measured fish sound production versus independently measured fish density can be generated to estimate abundance and biomass from sound levels at FSAs. We compared sound levels produced by spawning Gulf Corvina (Cynoscion othonopterus) with simultaneous measurements of density from active acoustic surveys in the Colorado River Delta, Mexico. During the formation of FSAs, we estimated peak abundance at 1.53 to 1.55 million fish, which equated to a biomass of 2,133 to 2,145 metric tons. Sound levels ranged from 0.02 to 12,738 Pa(2), with larger measurements observed on outgoing tides. The relationship between sound levels and densities was variable across the duration of surveys but stabilized during the peak spawning period after high tide to produce a linear relationship. Our results support the use of active acoustic methods to estimate density, abundance, and biomass of fish at FSAs; using appropriately scaled empirical relationships, sound levels can be used to infer these estimates.

Concepts: Acoustics, Approximation, Estimation, Sound, Sound pressure, Tide, Colorado River, Cynoscion


Although most studies of language learning take place in quiet laboratory settings, everyday language learning occurs under noisy conditions. The current research investigated the effects of background speech on word learning. Both younger (22- to 24-month-olds; n = 40) and older (28- to 30-month-olds; n = 40) toddlers successfully learned novel label-object pairings when target speech was 10 dB louder than background speech but not when the signal-to-noise ratio (SNR) was 5 dB. Toddlers (28- to 30-month-olds; n = 26) successfully learned novel words with a 5-dB SNR when they initially heard the labels embedded in fluent speech without background noise, before they were mapped to objects. The results point to both challenges and protective factors that may impact language learning in complex auditory environments.

Concepts: Language, Word, Acoustics, Learning, Microsoft Word, Noise, Signal-to-noise ratio, Eb/N0


The ability to generate new meaning by rearranging combinations of meaningless sounds is a fundamental component of language. Although animal vocalizations often comprise combinations of meaningless acoustic elements, evidence that rearranging such combinations generates functionally distinct meaning is lacking. Here, we provide evidence for this basic ability in calls of the chestnut-crowned babbler (Pomatostomus ruficeps), a highly cooperative bird of the Australian arid zone. Using acoustic analyses, natural observations, and a series of controlled playback experiments, we demonstrate that this species uses the same acoustic elements (A and B) in different arrangements (AB or BAB) to create two functionally distinct vocalizations. Specifically, the addition or omission of a contextually meaningless acoustic element at a single position generates a phoneme-like contrast that is sufficient to distinguish the meaning between the two calls. Our results indicate that the capacity to rearrange meaningless sounds in order to create new signals occurs outside of humans. We suggest that phonemic contrasts represent a rudimentary form of phoneme structure and a potential early step towards the generative phonemic system of human language.

Concepts: Human, Bird, Phonology, Acoustics, Italian language, Sound, Sign language, Element


Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

Concepts: Magnetic resonance imaging, Acoustics, Ultrasound, Sound, Levitation, Acoustic levitation


Point-of-care ultrasonography (POCUS) is a widely used tool in emergency and critical care settings, useful in the decision-making process as well as in interventional guidance. While having an impressive diagnostic accuracy in the hands of highly skilled operators, inexperienced practitioners must be aware of some common misinterpretations that may lead to wrong decisions at the bedside.

Concepts: Decision making, Critical thinking, Risk, Cognition, Decision theory, Philosophy of science, Unsolved problems in neuroscience, Acoustics


Imagine that you are blindfolded inside an unknown room. You snap your fingers and listen to the room’s response. Can you hear the shape of the room? Some people can do it naturally, but can we design computer algorithms that hear rooms? We show how to compute the shape of a convex polyhedral room from its response to a known sound, recorded by a few microphones. Geometric relationships between the arrival times of echoes enable us to “blindfoldedly” estimate the room geometry. This is achieved by exploiting the properties of Euclidean distance matrices. Furthermore, we show that under mild conditions, first-order echoes provide a unique description of convex polyhedral rooms. Our algorithm starts from the recorded impulse responses and proceeds by learning the correct assignment of echoes to walls. In contrast to earlier methods, the proposed algorithm reconstructs the full 3D geometry of the room from a single sound emission, and with an arbitrary geometry of the microphone array. As long as the microphones can hear the echoes, we can position them as we want. Besides answering a basic question about the inverse problem of room acoustics, our results find applications in areas such as architectural acoustics, indoor localization, virtual reality, and audio forensics.

Concepts: Algorithm, Geometry, Acoustics, Computer, Sound, Computational geometry, Architectural acoustics, Room acoustics