Discover the most talked about and latest scientific content & concepts.

Concept: Acid


Clinical chemistry tests for autism spectrum disorder (ASD) are currently unavailable. The aim of this study was to explore the diagnostic utility of proteotoxic biomarkers in plasma and urine, plasma protein glycation, oxidation, and nitration adducts, and related glycated, oxidized, and nitrated amino acids (free adducts), for the clinical diagnosis of ASD.

Concepts: Amino acid, Acid, Ammonia, Nitrogen, Autism, Asperger syndrome, Autism spectrum, Glycation


Controversy exists about the maximum amount of protein that can be utilized for lean tissue-building purposes in a single meal for those involved in regimented resistance training. It has been proposed that muscle protein synthesis is maximized in young adults with an intake of ~ 20-25 g of a high-quality protein; anything above this amount is believed to be oxidized for energy or transaminated to form urea and other organic acids. However, these findings are specific to the provision of fast-digesting proteins without the addition of other macronutrients. Consumption of slower-acting protein sources, particularly when consumed in combination with other macronutrients, would delay absorption and thus conceivably enhance the utilization of the constituent amino acids. The purpose of this paper was twofold: 1) to objectively review the literature in an effort to determine an upper anabolic threshold for per-meal protein intake; 2) draw relevant conclusions based on the current data so as to elucidate guidelines for per-meal daily protein distribution to optimize lean tissue accretion. Both acute and long-term studies on the topic were evaluated and their findings placed into context with respect to per-meal utilization of protein and the associated implications to distribution of protein feedings across the course of a day. The preponderance of data indicate that while consumption of higher protein doses (> 20 g) results in greater AA oxidation, this is not the fate for all the additional ingested AAs as some are utilized for tissue-building purposes. Based on the current evidence, we conclude that to maximize anabolism one should consume protein at a target intake of 0.4 g/kg/meal across a minimum of four meals in order to reach aminimumof 1.6 g/kg/day. Using the upper daily intake of 2.2 g/kg/day reported in the literature spread out over the same four meals would necessitate a maximum of 0.55 g/kg/meal.

Concepts: Protein, Amino acid, Acid, Metabolism, Nutrition, Nitrogen, Peptide synthesis, Maxima and minima


Recent epidemics of Zika virus (ZIKV) have been associated with congenital malformation during pregnancy and Guillain-Barré syndrome. There are two ZIKV lineages (African and Asian) that share >95% amino acid identity. Little is known regarding the ability of neutralizing antibodies elicited against one lineage to protect against the other. We investigated the breadth of the neutralizing antibody response following ZIKV infection by measuring the sensitivity of six ZIKV strains to neutralization by ZIKV-confirmed convalescent human serum or plasma samples. Contemporary Asian and early African ZIKV strains were similarly sensitive to neutralization regardless of the cellular source of virus. Furthermore, mouse immune serum generated after infection with African or Asian ZIKV strains was capable of neutralizing homologous and heterologous ZIKV strains equivalently. Because our study only defines a single ZIKV serotype, vaccine candidates eliciting robust neutralizing antibody responses should inhibit infection of both ZIKV lineages, including strains circulating in the Americas.

Concepts: Immune system, Antibody, Protein, Neutralizing antibody, Bacteria, Acid, Antibodies, Congenital disorder


Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.

Concepts: Protein, Gut flora, Amino acid, Acid, Amine, Nutrition, Ecology, Essential amino acid


Protein supplementation during resistance exercise training augments hypertrophic gains. Protein ingestion and the resultant hyperaminoacidemia provides the building blocks (indispensable amino acids - IAA) for, and also triggers an increase in, muscle protein synthesis (MPS), suppression of muscle protein breakdown (MPB), and net positive protein balance (i.e., MPS > MPB). The key amino acid triggering the rise in MPS is leucine, which stimulates the mechanistic target of rapamycin complex-1, a key signalling protein, and triggers a rise in MPS. As such, ingested proteins with a high leucine content would be advantageous in triggering a rise in MPS. Thus, protein quality (reflected in IAA content and protein digestibility) has an impact on changes in MPS and could ultimately affect skeletal muscle mass. Protein quality has been measured by the protein digestibility-corrected amino acid score (PDCAAS); however, the digestible indispensable amino acid score (DIAAS) has been recommended as a better method for protein quality scoring. Under DIAAS there is the recognition that amino acids are individual nutrients and that protein quality is contingent on IAA content and ileal (as opposed to fecal) digestibility. Differences in protein quality may have important ramifications for exercise-induced changes in muscle mass gains made with resistance exercise as well as muscle remodelling. Thus, the purpose of this review is a critical appraisal of studies examining the effects of protein quality in supplementation on changes in muscle mass and strength as well as body composition during resistance training.

Concepts: Protein, Amino acid, Acid, Amine, Metabolism, Nutrition, Muscle, Essential amino acid


Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity.

Concepts: Acid, Water, United States, Chemistry, Potassium, Base, Ocean acidification, Alkalinity


Lactic acid bacteria (LAB) are utilized widely for the fermentation of foods. In the current post-genomic era, tools have been developed that explore genetic diversity among LAB strains aiming to link these variations to differential phenotypes observed in the strains investigated. However, these genotype-phenotype matching approaches fail to assess the role of conserved genes in the determination of physiological characteristics of cultures by environmental conditions. This manuscript describes a complementary approach in which Lactobacillus plantarum WCFS1 was fermented under a variety of conditions that differ in temperature, pH, as well as NaCl, amino acid, and O(2) levels. Samples derived from these fermentations were analyzed by full-genome transcriptomics, paralleled by the assessment of physiological characteristics, e.g., maximum growth rate, yield, and organic acid profiles. A data-storage and -mining suite designated FermDB was constructed and exploited to identify correlations between fermentation conditions and industrially relevant physiological characteristics of L. plantarum, as well as the associated transcriptome signatures. Finally, integration of the specific fermentation variables with the transcriptomes enabled the reconstruction of the gene-regulatory networks involved. The fermentation-genomics platform presented here is a valuable complementary approach to earlier described genotype-phenotype matching strategies which allows the identification of transcriptome signatures underlying physiological variations imposed by different fermentation conditions.

Concepts: Gene, Bacteria, Acid, Microbiology, Lactic acid, Lactobacillus, Lactobacillus plantarum, Sauerkraut


Porcine circovirus type 2 (PCV2) is considered to be the primary causative agent of postweaning multisystemic wasting syndrome (PMWS), which has become a serious economic problem for the swine industry worldwide. The major genotypes, PCV2a and PCV2b, are highly prevalent in the pig population and are present worldwide. However, another newly emerging PCV2b genotype mutant, which has a mutation in its ORF2-encoded capsid protein, has been sporadically present in China, as well as in other countries. It is therefore important to determine the relative virulence of the newly emerging PCV2b genotype mutant, compared with the existing PCV2a and PCV2b genotypes, and to investigate whether the newly emerging mutant virus induces more severe illness.

Concepts: DNA, Gene, Evolution, Amino acid, Acid, Microbiology, Porcine circovirus, Virology


Direct evidence of complex prebiotic chemistry from a water-rich world in the outer solar system is provided by the 4.5-billion-year-old halite crystals hosted in the Zag and Monahans (1998) meteorites. This study offers the first comprehensive organic analysis of the soluble and insoluble organic compounds found in the millimeter-sized halite crystals containing brine inclusions and sheds light on the nature and activity of aqueous fluids on a primitive parent body. Associated with these trapped brines are organic compounds exhibiting wide chemical variations representing organic precursors, intermediates, and reaction products that make up life’s precursor molecules such as amino acids. The organic compounds also contain a mixture of C-, O-, and N-bearing macromolecular carbon materials exhibiting a wide range of structural order, as well as aromatic, ketone, imine, and/or imidazole compounds. The enrichment in 15N is comparable to the organic matter in pristine Renazzo-type carbonaceous chondrites, which reflects the sources of interstellar 15N, such as ammonia and amino acids. The amino acid content of the Zag halite deviates from the meteorite matrix, supporting an exogenic origin of the halite, and therefore, the Zag meteorite contains organics synthesized on two distinct parent bodies. Our study suggests that the asteroidal parent body where the halite precipitated, potentially asteroid 1 Ceres, shows evidence for a complex combination of biologically and prebiologically relevant molecules.

Concepts: Amino acid, Acid, Amine, Ammonia, Chemistry, Mars, Carbon, Meteorite


The vast majority of membrane proteins are anchored to biological membranes through hydrophobic α-helices. Sequence analysis of high-resolution membrane protein structures show that ionizable amino acid residues are present in transmembrane ™ helices, often with a functional and/or structural role. Here, using as scaffold the hydrophobic TM domain of the model membrane protein glycophorin A (GpA), we address the consequences of replacing specific residues by ionizable amino acids on TM helix insertion and packing, both in detergent micelles and in biological membranes. Our findings demonstrate that ionizable residues are stably inserted in hydrophobic environments, and tolerated in the dimerization process when oriented toward the lipid face, emphasizing the complexity of protein-lipid interactions in biological membranes.

Concepts: Protein, Protein structure, Amino acid, Acid, Cell membrane, Membrane protein, Lipid bilayer, Integral membrane protein