Discover the most talked about and latest scientific content & concepts.

Concept: Accuracy and precision


Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware’s underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.

Concepts: Neuron, Action potential, Demonstration, Performance, Accuracy and precision, Intelligence, Architecture


A barrier to preventative treatments for psychosis is the absence of accurate identification of persons at highest risk. A blood test that could substantially increase diagnostic accuracy would enhance development of psychosis prevention interventions.

Concepts: Blood, Sample size, Measurement, Greek loanwords, Psychometrics, Reliability, Accuracy and precision, ANOVA Gauge R&R


Combined pelvic floor electromyography (EMG) and videocystourethrography (VCUG) during urodynamic investigation are the most acceptable and widely agreed methods for diagnosing detrusor external sphincter dyssynergia (DESD). Theoretically, external urethral sphincter pressure (EUSP) measurement would provide enough information for the diagnosis of DESD and could simplify the urodynamic investigation replacing combined pelvic floor EMG and VCUG. Thus, we evaluated the diagnostic accuracy of EUSP measurement for DESD. PATIENTS #ENTITYSTARTX00026;

Concepts: Diagnosis, Measurement, Electromyography, Pelvic floor, Accuracy and precision, Urethral sphincter


The KIPPPI (Brief Instrument Psychological and Pedagogical Problem Inventory) is a Dutch questionnaire that measures psychosocial and pedagogical problems in 2-year olds and consists of a KIPPPI Total score, Wellbeing scale, Competence scale, and Autonomy scale. This study examined the reliability, validity, screening accuracy and clinical application of the KIPPPI.

Concepts: Psychometrics, Reliability, Clinical psychology, Accuracy and precision, Problem solving, Problem


BACKGROUND: The new combination of moxifloxacin HCl and cefixime trihydrate is approved for the treatments of lower respiratory tract infections in adults. At initial formulation development and screening stage a fast and reliable method for the dissolution and release testing of moxifloxacin and cefixime were highly desirable. The zero order overlaid UV spectra of moxifloxacin and cefixime showed >90% of spectra are overlapping. Hence, simple, accurate precise and validated two derivative spectrophotometric methods have been developed for the determination of moxifloxacin and cefixime. METHODS: In the first derivative spectrophotometric method varying concentration of moxifloxacin and cefixime were prepared and scanned in the range of 200 to 400 nm and first derivative spectra were calculated (n = 1). The zero crossing wavelengths 287 nm and 317.9 nm were selected for determination of moxifloxacin and cefixime, respectively. In the second method the first derivative of ratio spectra was calculated and used for the determination of moxifloxacin and cefixime by measuring the peak intensity at 359.3 nm and 269.6 nm respectively. RESULTS: Calibration graphs were established in the range of 1–16 mug /mL and 1–15 mug /mL for both the drugs by first and ratio first derivative spectroscopic methods respectively with good correlation coefficients. Average accuracy of assay of moxifloxacin and cefixime were found to be 100.68% and 98 93%, respectively. Relative standard deviations of both inter and intraday assays were less than 1.8%. Moreover, recovery of moxifloxacin and cefixime was more than 98.7% and 99.1%, respectively. CONCLUSIONS: The described derivative spectrophotometric methods are simple, rapid, accurate, precise and excellent alternative to sophisticated chromatographic techniques. Hence, the proposed methods can be used for the quality control of the cited drugs and can be extended for routine analysis of the drugs in formulations.

Concepts: Spectroscopy, Ultraviolet, Respiratory system, Upper respiratory tract, Accuracy and precision, Lower respiratory tract, Ultraviolet-visible spectroscopy, Spectrophotometry


Segments of identity by descent (IBD) detected from high-density genetic data are useful for many applications, including long-range phase determination, phasing family data, imputation, IBD mapping and heritability analysis in founder populations. We present Refined IBD, a new method for IBD segment detection. Refined IBD achieves both computational efficiency and highly accurate IBD segment reporting by searching for IBD in two steps. The first step (identification) uses the GERMLINE algorithm to find shared haplotypes exceeding a length threshold. The second step (refinement), evaluates candidate segments with a probabilistic approach to assess the evidence for IBD. Like GERMLINE, Refined IBD allows for IBD reporting on a haplotype level, which facilitates determination of multi-individual IBD and allows for haplotype-based downstream analyses. To investigate the properties of Refined IBD, we simulate SNP data from a model with recent super-exponential population growth that is designed to match UK data. The simulation results show that Refined IBD achieves a better power/accuracy profile than fastIBD or GERMLINE. We find that a single run of Refined IBD achieves greater power than 10 runs of fastIBD. We also apply Refined IBD to SNP data for samples from the UK and from Northern Finland, and describe the IBD sharing in these data sets. Refined IBD is powerful, highly accurate, easy to use, and is implemented in Beagle version 4.

Concepts: Genetics, Demography, Population, Population ecology, Accuracy and precision, Segment, World population, Carrying capacity


Background and the purpose of the study: Rizatriptan is used effectively for the treatment of migraine headache. In this study, a simple, rapid and low cost spectrophotometric method based on the ion-pair complexation is proposed for the determination of rizatriptan in raw material and dosage forms. METHODS: The ion-pair complexation using bromocresol green as reagent was performed in a buffer solution and the absorbance was measured by a spectrophotometer. The ion-pair formation conditions were optimized and the accuracy and precision of the method were calculated.Results and major conclusion: Best results were achieved by using 6 ml of the bromocresol green reagent in the presence of phosphate buffer (pH 3.0). The stoichiometry of the resulted complex was 1:1. The within-day and between-day precision values were lower than 2.9 and 1.8 percent for the calibration range of 0.5–50 and 10–100 mug/ml, respectively. The proposed method was successfully used for the determination of rizatriptan in dosage forms without any interference.

Concepts: Spectroscopy, Chemical equilibrium, PH, Phosphate buffered saline, Accuracy and precision, Buffer solution, Equilibrium chemistry, Spectrophotometry


Accurate illness understanding enables patients to make informed decisions. Evidence of the influence of prognostic discussions on the accuracy of illness understanding by patients would demonstrate the value of discussions.

Concepts: Critical thinking, Medical terms, Accuracy and precision


Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

Concepts: Accuracy and precision, Unmanned aerial vehicle, Helicopter, MQ-1 Predator


Replication is vital for increasing precision and accuracy of scientific claims. However, when replications “succeed” or “fail,” they could have reputational consequences for the claim’s originators. Surveys of United States adults (N = 4,786), undergraduates (N = 428), and researchers (N = 313) showed that reputational assessments of scientists were based more on how they pursue knowledge and respond to replication evidence, not whether the initial results were true. When comparing one scientist that produced boring but certain results with another that produced exciting but uncertain results, opinion favored the former despite researchers' belief in more rewards for the latter. Considering idealized views of scientific practices offers an opportunity to address incentives to reward both innovation and verification.

Concepts: Scientific method, Critical thinking, Belief, Epistemology, Science, Accuracy and precision, Scientist, Pseudoscience