Discover the most talked about and latest scientific content & concepts.

Concept: 5-HT1A receptor


The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors. PAPERCLIP.

Concepts: Signal transduction, Receptor, Serotonin, Agonist, 5-HT receptor, 5-HT2C receptor, 5-HT1A receptor, 5-HT2B receptor


A novel series of arylpiperazinylalkyl 2-benzoxazolones and 2-benzothiazolones 18-38 was designed, synthesized and tested to evaluate their affinity for the 5-HT7 and 5-HT1A receptors. Compounds with a 2-benzothiazolone nucleus generally had affinity values higher than the corresponding 2-benzoxazolone compounds. In particular, derivatives possessing a six or seven carbon chain linker between 2-benzothiazolone and arylpiperazine had Ki values in the subnanomolar range for the 5-HT1A receptor and in the low nanomolar range for the 5-HT7 receptor, indicating that they may be interesting dual ligands. Molecular modeling studies revealed different docking poses for the investigated compounds in homology models of 5-HT1A and 5-HT7 receptors, which explained their experimentally determined affinities and general low selectivity. Additionally, structural interaction fingerprints analysis identified the important amino acid residues for the specific interactions of long-chain arylpiperazines within the binding pockets of both serotonin receptors.

Concepts: Protein, Amino acid, Receptor, Cell signaling, Serotonin, 5-HT receptor, Aripiprazole, 5-HT1A receptor


This study aimed to assess the efficacy and safety of flibanserin, a serotonin receptor 1A agonist/serotonin receptor 2A antagonist, in postmenopausal women with hypoactive sexual desire disorder (HSDD).

Concepts: Estrogen, Receptor, Serotonin, Agonist, G protein coupled receptors, Sexual dysfunction, Hypoactive sexual desire disorder, 5-HT1A receptor


Rodent defense behavior assays have been widely used as preclinical models of anxiety to study possibly therapeutic anxiety-reducing interventions. However, some proposed anxiety-modulating factors - genes, drugs and stressors - have had discordant effects across different studies. To reconcile the effect sizes of purported anxiety factors, we conducted systematic review and meta-analyses of the literature on ten anxiety-linked interventions, as examined in the elevated plus maze, open field and light-dark box assays. Diazepam, 5-HT1A receptor gene knockout and overexpression, SERT gene knockout and overexpression, pain, restraint, social isolation, corticotropin-releasing hormone and Crhr1 were selected for review. Eight interventions had statistically significant effects on rodent anxiety, while Htr1a overexpression and Crh knockout did not. Evidence for publication bias was found in the diazepam, Htt knockout, and social isolation literatures. The Htr1a and Crhr1 results indicate a disconnect between preclinical science and clinical research. Furthermore, the meta-analytic data confirmed that genetic SERT anxiety effects were paradoxical in the context of the clinical use of SERT inhibitors to reduce anxiety.

Concepts: Medicine, Genetics, Gene expression, Statistical significance, Effect size, Meta-analysis, Corticotropin releasing hormone receptor 1, 5-HT1A receptor


The mixed serotonin (5-HT) 1A/2A/2B/2C/6/7 receptor agonist psilocybin dose-dependently induces an altered state of consciousness (ASC) that is characterized by changes in sensory perception, mood, thought, and the sense of self. The psychological effects of psilocybin are primarily mediated by 5-HT2A receptor activation. However, accumulating evidence suggests that 5-HT1A or an interaction between 5-HT1A and 5-HT2A receptors may contribute to the overall effects of psilocybin. Therefore, we used a double-blind, counterbalanced, within-subject design to investigate the modulatory effects of the partial 5-HT1A agonist buspirone (20mg p.o.) and the non-hallucinogenic 5-HT2A/1A agonist ergotamine (3mg p.o.) on psilocybin-induced (170µg/kg p.o.) psychological effects in two groups (n=19, n=17) of healthy human subjects. Psychological effects were assessed using the Altered State of Consciousness (5D-ASC) rating scale. Buspirone significantly reduced the 5D-ASC main scale score for Visionary Restructuralization (VR) (p<0.001), which was mostly driven by a reduction of the VR item cluster scores for elementary and complex visual hallucinations. Further, buspirone also reduced the main scale score for Oceanic Boundlessness (OB) including derealisation and depersonalisation phenomena at a trend level (p=0.062), whereas ergotamine did not show any effects on the psilocybin-induced 5D-ASC main scale scores. The present finding demonstrates that buspirone exerts inhibitory effects on psilocybin-induced effects, presumably via 5-HT1A receptor activation, an interaction between 5-HT1A and 5-HT2A receptors, or both. The data suggest that the modulation of 5-HT1A receptor activity may be a useful target in the treatment of visual hallucinations in different psychiatric and neurological diseases.

Concepts: Mind, Receptor antagonist, Serotonin, Agonist, Inverse agonist, 5-HT receptor, 5-HT1A receptor, Buspirone


Users of ±3,4-methylenedioxymethamphetamine (MDMA; ‘ecstasy’) report prosocial effects such as sociability and empathy. Supporting these apparently unique social effects, data from controlled laboratory studies indicate that MDMA alters social feelings, information processing, and behavior in humans, and social behavior in rodents. Here, we review this growing body of evidence. In rodents, MDMA increases passive prosocial behavior (adjacent lying) and social reward while decreasing aggression, effects that may involve serotonin 1A receptor mediated oxytocin release interacting with vasopressin receptor 1A. In humans, MDMA increases plasma oxytocin and produces feelings of social affiliation. It decreases identification of negative facial expressions (cognitive empathy) and blunts responses to social rejection, while enhancing responses to others' positive emotions (emotional empathy) and increasing social approach. Thus, consistent with drug folklore, laboratory administration of MDMA robustly alters social processing in humans and increases social approach in humans and animals. Effects are consistent with increased sociability, with mixed evidence about enhanced empathy. These neurobiologically-complex prosocial effects likely motivate recreational ecstasy use.

Concepts: Psychology, Oxytocin, Vasopressin, Serotonin, Empathy, Amphetamine, Serotonin syndrome, 5-HT1A receptor


The serotonin 1A receptor (5-HT1A) plays a major role in modulating the effects of serotonin on mood and behavior. Previous studies have shown that knockout of 5-HT1A selectively in the raphe leads to higher levels of anxiety during adulthood. However, it remains unclear whether this phenotype is due to variation in receptor levels specifically during development or throughout life. To test the hypothesis that developmental sensitivity may underlie the effects of 5-HT1A on anxiety, we used an inducible transgenic system to selectively suppress 5-HT1A levels in serotonergic raphe neurons from post-natal days 14-30, with a maximal reduction of 40% at post-natal day 21 and return of regular levels by post-natal day 30. This developmental decrease in receptor levels has long lasting consequences, increasing anxiety and decreasing social investigation in adulthood. In addition, postnatal knockdown of autoreceptors leads to long term increases in the excitability of serotonergic neurons, which may represent a mechanism underlying the effects of post-natal receptor variation on behavior later in life. Finally, we also examined the interplay between receptor variation and juvenile exposure to stress (applied from postnatal days 14 to 21). Similar to receptor knockdown, juvenile exposure to stress led to increased anxiety phenotypes, but did not exacerbate 5-HT1A knockdown-mediated anxiety levels. This work indicates that the effects of 5-HT1A autoreceptors on anxiety and social behaviors are developmentally mediated and suggests that natural variations in the expression of 5-HT1A may act during development to influence individual anxiety levels and contribute to susceptibility to anxiety disorders.Neuropsychopharmacology accepted article preview online, 2 August 2013. doi:10.1038/npp.2013.185.

Concepts: Anxiety, Psychology, Evolution, Serotonin, Selective serotonin reuptake inhibitor, Human behavior, Order theory, 5-HT1A receptor


The present study investigated the effects of estradiol (E2) on ingestive behavior after activation of 5-HT1A receptors in the lateral hypothalamus (LH) of female rats habituated to eat a wet mash diet. Ovariectomized rats treated with corn oil (OVX) or estradiol cypionate (OVX+E) received local injections into the LH of vehicle or an agonist of 5-HT1A receptors, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT; at a dose of 6 nmol). To determine the involvement of these receptors in food intake, some animals were pretreated with N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide maleate (WAY-100635, a 5-HT1A receptor full antagonist, at a dose of 0.37 nmol), followed by the injection of the agonist 8-OH-DPAT or its vehicle. The results showed that the injection of 8-OH-DPAT into the LH of OVX rats significantly increased food intake, and the duration and frequency of this behavior. The pretreatment with E2 suppressed the hyperphagic response induced by 8-OH-DPAT in OVX animals. The inhibition of 5-HT1A receptors after pretreatment with WAY-100635 blocked the hyperphagic effects evoked by 8-OH-DPAT in OVX. These results indicate that the activity of LH 5-HT1A receptors could be affected by blood E2 levels.

Concepts: Luteinizing hormone, Receptor, Food, Ligand, Receptor antagonist, Agonist, Inverse agonist, 5-HT1A receptor


The G-allele of the -1019C/G (rs6295) promoter polymorphism of the serotonin receptor 1A (HTR1A) gene has been implicated in anxiety; however, the underlying neurophysiological processes are still not fully understood. Recent evidence indicates that low parasympathetic (vagal) tone is predictive of anxiety. We thus conducted a structural equation model (SEM) to examine whether the HTR1A rs6295 variant can affect anxiety by altering parasympathetic nervous activity.

Concepts: Anxiety, Psychology, Gene, Chromosome, Serotonin, G protein coupled receptors, 5-HT receptor, 5-HT1A receptor


Our previous study found that serotonin 1A receptor (5-HT1aR) is an endogenous suppressor of nNOS expression in the hippocampus, which accounts for anxiolytic effect of fluoxetine. However, the precise molecular mechanism remains unknown. By using 8-OH-DPAT, a selective 5-HT1aR agonist, NAN-190, a selective 5-HT1aR antagonist, and U0126, an Extracellular Regulated Protein Kinases (ERK) phosphorylation inhibitor, we investigated the role of ERK in 5-HT1aR-nNOS pathway. Western blots analysis demonstrated that 5-HT1aR activation up-regulated the level of phosphorylated ERK (P-ERK) beginning at 5 minutes and down-regulated the expression of nNOS beginning at 20 minutes. Meanwhile, blockage of 5-HT1aR resulted in a decrease in P-ERK beginning at 20 minutes and caused an increase in nNOS expression beginning at 6 hours. Although U0126 itself did not alter nNOS expression and activity, NO level, and anxiety-related behaviors, the treatment totally reversed 8-OH-DPAT-induced reduction in nNOS expression and function, and anxiolytic effect. Besides, our data showed that ERK phosphorylation was essential for 5-HT1aR activation-induced cAMP responsive element binding protein (CREB) phosphorylation, hippocampal neurogenesis and synaptogenesis of newborn neuron. Our study suggests a crucial role of ERK phosphorylation in the regulation of nNOS expression by 5-HT1aR, which is helpful for understanding the mechanism of 5-HT1aR-based anxiolytic treatment.

Concepts: Signal transduction, Adenosine triphosphate, Receptor, Kinase, Neurogenesis, Serotonin, Agonist, 5-HT1A receptor