SciCombinator

Discover the most talked about and latest scientific content & concepts.

Abstract
Objective: To evaluate the diagnostic value of the lung nodule classification and segmentation algorithm based on deep learning among different CT reconstruction algorithms. Methods: Chest CT of 363 patients from June 2019 to September 2019 in Radiology Department of Tianjin Medical University Chu Hsien-I Memorial Hospital were retrospectively collected in this study, each of which consisted of images by three different reconstruction methods (lung reconstruction, mediastinal reconstruction, bone reconstruction).These collected data were used as testing set and a total of 4 185 Chest CTs including the public data set and the constructed private data set were used as the training set. A model combines 3D deep convolutional neural network and recurrent neural network under a multi-task joint learning algorithm for lung nodule classification and segmentation were constructed. The well-trained method was tested on 363 test cases using two metrics, i.e., the accuracy of the density classification and the Dice coefficient of nodule segmentation. The performances under three reconstruction methods were statistically analyzed according to the variance analysis among three different reconstruction methods. Results: The average classification accuracies of the nodule under three reconstruction methods were 98.67%±5.70%, 98.38%±6.61% and 97.89%±7.32%. Specifically, the accuracies of the solid nodules under three reconstruction methods were 98.79%±5.58%, 98.49%±6.89% and 97.90%±7.41% and the accuracies of the sub-solid nodules were 97.57%±10.19%, 98.52%±7.77% and 98.52%±7.77%. There was no significant difference in the classification accuracy of pulmonary nodules under three different reconstruction algorithms (all P>0.05). The average Dice coefficients of nodule segmentation was 79.87%±5.78%, 79.02%±6.04% and 79.31%±5.95%. There was no significant difference in the average Dice coefficients of nodule segmentation under three different reconstruction algorithms (all P>0.05). Conclusion: Deep learning algorithm which combined with 3D convolutional neural network and recurrent neural network has demonstrated relatively stable in classification and segmentation of lung nodules under different CT reconstruction method.
Tweets*
1
Facebook likes*
0
Reddit*
0
News coverage*
0
Blogs*
0
SC clicks
0
Concepts
-
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com