SciCombinator

Discover the most talked about and latest scientific content & concepts.

KG Miller, JV Browning, WJ Schmelz, RE Kopp, GS Mountain and JD Wright
Abstract
Using Pacific benthic foraminiferal δ18O and Mg/Ca records, we derive a Cenozoic (66 Ma) global mean sea level (GMSL) estimate that records evolution from an ice-free Early Eocene to Quaternary bipolar ice sheets. These GMSL estimates are statistically similar to “backstripped” estimates from continental margins accounting for compaction, loading, and thermal subsidence. Peak warmth, elevated GMSL, high CO2, and ice-free “Hothouse” conditions (56 to 48 Ma) were followed by “Cool Greenhouse” (48 to 34 Ma) ice sheets (10 to 30 m changes). Continental-scale ice sheets (“Icehouse”) began ~34 Ma (>50 m changes), permanent East Antarctic ice sheets at 12.8 Ma, and bipolar glaciation at 2.5 Ma. The largest GMSL fall (27 to 20 ka; ~130 m) was followed by a >40 mm/yr rise (19 to 10 ka), a slowing (10 to 2 ka), and a stillstand until ~1900 CE, when rates began to rise. High long-term CO2 caused warm climates and high sea levels, with sea-level variability dominated by periodic Milankovitch cycles.
Tweets*
127
Facebook likes*
0
Reddit*
2
News coverage*
27
Blogs*
6
SC clicks
0
Concepts
-
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com