SciCombinator

Discover the most talked about and latest scientific content & concepts.

Abstract
Leaching of toxic metallic elements (Cu, Zn, As, Cd, and Pb) from two solid mine wastes was characterized under different drying treatments. During 14 batch decant-refill leaching steps, samples were intermittently dried four times in 40 °C oven or -20 °C freezer. For all leachates, the pH, pE, Fe2+/Fe3+, and SO42- were analyzed. The parameters of the two-site model (kfast, kslow, and ffast) and labile fractions (F1 + F2) were determined. High levels of toxic metallic elements were determined in waste samples; however, their leaching was limited, as evidenced by the magnitudes of F1 + F2, ffast, and kslow. Leachate solutions were acidic, at pH 3-4, and oxic, at 150 mV < Eh 300 < mV, thus having negligible Fe2+. Leachate concentrations of toxic metallic elements increased (4-58%) after drying at 40 °C and were strongly correlated (r2 = 0.780) with those of sulfate in liquid phase. The mass of element elution was in the order of 40 °C drying > -20 °C drying ≥ continuous wetting. Results indicate that the element leachability is increased through drying events and the leachate concentration is associated with the dissolution reaction of sulfur-bearing minerals. Frequent occurrence of prolonged droughts along with high temperatures over the mine waste disposal site, can enhance the leaching potential of toxic metallic elements.
Tweets*
0
Facebook likes*
0
Reddit*
0
News coverage*
0
Blogs*
0
SC clicks
0
Concepts
-
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com