SciCombinator

Discover the most talked about and latest scientific content & concepts.

M Shaibani, MS Mirshekarloo, R Singh, CD Easton, MCD Cooray, N Eshraghi, T Abendroth, S Dörfler, H Althues, S Kaskel, AF Hollenkamp, MR Hill and M Majumder
Abstract
Lithium-sulfur batteries can displace lithium-ion by delivering higher specific energy. Presently, however, the superior energy performance fades rapidly when the sulfur electrode is loaded to the required levels-5 to 10 mg cm-2- due to substantial volume change of lithiation/delithiation and the resultant stresses. Inspired by the classical approaches in particle agglomeration theories, we found an approach that places minimum amounts of a high-modulus binder between neighboring particles, leaving increased space for material expansion and ion diffusion. These expansion-tolerant electrodes with loadings up to 15 mg cm-2 yield high gravimetric (>1200 mA·hour g-1) and areal (19 mA·hour cm-2) capacities. The cells are stable for more than 200 cycles, unprecedented in such thick cathodes, with Coulombic efficiency above 99%.
Tweets*
206
Facebook likes*
0
Reddit*
0
News coverage*
63
Blogs*
12
SC clicks
0
Concepts
-
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com