Discover the most talked about and latest scientific content & concepts.

BACKGROUND: Replication and transcription, the two key functions of DNA, require unwinding of the DNA double helix. It has been shown that replication origins in the budding yeast, Saccharomyces cerevisiae contain an easily unwound stretch of DNA. We have used a recently developed method for determining the locations and degrees of stress-induced duplex destabilization (SIDD) for all the reported replication origins in the genome of the fission yeast, Schizosaccharomyces pombe. RESULTS: We have found that the origins are more susceptible to SIDD as compared to the non-origin intergenic regions (NOIRs) and genes. SIDD analysis of many known origins in other eukaryotes suggests that SIDD is a common property of replication origins. Interestingly, the previously shown deletion-dependent changes in the activities of the origins of the ura4 origin region on chromosome 3 are paralleled by changes in SIDD properties, suggesting SIDD’s role in origin activity. SIDD profiling following in silico deletions of some origins suggests that many of the closely spaced S. pombe origins could be clusters of two or three weak origins, similar to the ura4 origin region. CONCLUSION: SIDD appears to be a highly conserved, functionally important property of replication origins in S. pombe and other organisms. The distinctly low SIDD scores of origins and the long range effects of genetic alterations on SIDD properties provide a unique predictive potential to the SIDD analysis. This could be used in exploring different aspects of structural and functional organization of origins including interactions between closely spaced origins.
Facebook likes*
News coverage*
SC clicks
Gene, Genome, Ascomycota, Yeasts, Schizosaccharomyces pombe, DNA, Model organism, Yeast
MeSH headings
comments powered by Disqus

* Data courtesy of