SciCombinator

Discover the most talked about and latest scientific content & concepts.

M Kawai, Y Kataoka, J Sonobe, H Yamamoto, T Yamamoto, K Bessho and K Ohura
Abstract
Alveolar bone is not spontaneously regenerated following trauma or periodontitis. We previously proposed an animal model for new alveolar bone regeneration therapy based on the non-viral BMP-2/7 gene expression vector and in vivo electroporation, which induced the formation of new alveolar bone over the course of a week. Here, we analysed alveolar bone during a period of three weeks following gene transfer to periodontal tissue. Non-viral plasmid vector pCAGGS-BMP-2/7 or pCAGGS control was injected into palatal periodontal tissue of the first molar of the rat maxilla and immediately electroporated with 32 pulses of 50 V for 50 msec. Over the following three weeks, rats were double bone-stained by calcein and tetracycline every three days and mineral apposition rates (MAR) were measured. Double bone-staining revealed that MAR of alveolar bone was as similar level three days before BMP-2/7 gene transfer as three days after gene transfer. However, from 3 to 6 days, 6 to 9 days, 9 to 12 days, 12 to 15 days, 15 to 18 days, and 18 to 20 days after, MARs were significantly higher than prior to gene transfer. Our proposed gene therapy for alveolar bone regeneration combining non-viral BMP-2/7 gene expression vector and in vivo electroporation could increase alveolar bone regeneration potential in the targeted area for up to three weeks.
Tweets*
3
Facebook likes*
0
Reddit*
0
News coverage*
0
Blogs*
0
SC clicks
0
Concepts
-
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com