SciCombinator

Discover the most talked about and latest scientific content & concepts.

Z Zheng, JS Lauritzen, E Perlman, CG Robinson, M Nichols, D Milkie, O Torrens, J Price, CB Fisher, N Sharifi, SA Calle-Schuler, L Kmecova, IJ Ali, B Karsh, ET Trautman, JA Bogovic, P Hanslovsky, GSXE Jefferis, M Kazhdan, K Khairy, S Saalfeld, RD Fetter and DD Bock
Abstract
Drosophila melanogaster has a rich repertoire of innate and learned behaviors. Its 100,000-neuron brain is a large but tractable target for comprehensive neural circuit mapping. Only electron microscopy (EM) enables complete, unbiased mapping of synaptic connectivity; however, the fly brain is too large for conventional EM. We developed a custom high-throughput EM platform and imaged the entire brain of an adult female fly at synaptic resolution. To validate the dataset, we traced brain-spanning circuitry involving the mushroom body (MB), which has been extensively studied for its role in learning. All inputs to Kenyon cells (KCs), the intrinsic neurons of the MB, were mapped, revealing a previously unknown cell type, postsynaptic partners of KC dendrites, and unexpected clustering of olfactory projection neurons. These reconstructions show that this freely available EM volume supports mapping of brain-spanning circuits, which will significantly accelerate Drosophila neuroscience. VIDEO ABSTRACT.
Tweets*
892
Facebook likes*
7
Reddit*
3
News coverage*
58
Blogs*
9
SC clicks
1
Concepts
-
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com