SciCombinator

Discover the most talked about and latest scientific content & concepts.

Reviewer bias in single- versus double-blind peer review

OPEN Proceedings of the National Academy of Sciences of the United States of America | 16 Nov 2017

A Tomkins, M Zhang and WD Heavlin
Abstract
Peer review may be “single-blind,” in which reviewers are aware of the names and affiliations of paper authors, or “double-blind,” in which this information is hidden. Noting that computer science research often appears first or exclusively in peer-reviewed conferences rather than journals, we study these two reviewing models in the context of the 10th Association for Computing Machinery International Conference on Web Search and Data Mining, a highly selective venue (15.6% acceptance rate) in which expert committee members review full-length submissions for acceptance. We present a controlled experiment in which four committee members review each paper. Two of these four reviewers are drawn from a pool of committee members with access to author information; the other two are drawn from a disjoint pool without such access. This information asymmetry persists through the process of bidding for papers, reviewing papers, and entering scores. Reviewers in the single-blind condition typically bid for 22% fewer papers and preferentially bid for papers from top universities and companies. Once papers are allocated to reviewers, single-blind reviewers are significantly more likely than their double-blind counterparts to recommend for acceptance papers from famous authors, top universities, and top companies. The estimated odds multipliers are tangible, at 1.63, 1.58, and 2.10, respectively.
Tweets*
2472
Facebook likes*
5
Reddit*
3
News coverage*
3
Blogs*
9
SC clicks
2
Concepts
Critic, Experiment, Scientific method, Writing occupations, Computer, Book review, Review, Peer review
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com