Discover the most talked about and latest scientific content & concepts.

PAS Sheppard, WA Koss, KM Frick and E Choleris
Increased attention has been paid in recent years to the ways in which estrogens and estrogen receptors rapidly affect learning and memory. These rapid effects occur within a timeframe too narrow for the classical genomic mode of estrogen action, thus suggesting non-classical effects as underlying mechanisms. The present review examines recent developments in the study of the rapid effects of 17β-estradiol and estrogen receptor (ER) agonists on learning and memory tasks in female rodents, including social recognition, object recognition, object placement (spatial memory), and social learning. By comparing studies utilizing systemic or intracranial treatments, as well as pre- and post-acquisition administration of estradiol or ER agonists, the respective contributions of individual ERs within specific brain regions to various forms of learning and memory can be elucidated. The first part of this review explores the effects of systemic administration of 17β-estradiol and ER agonists on memory when administered either pre- or post-acquisition. The second part focuses on the effects of pre- and post-acquisition infusions of 17β-estradiol or ER agonists into the dorsal hippocampus on memory, but also discusses the contributions of other brain regions including the medial amygdala, medial prefrontal cortex, and paraventricular nucleus of the hypothalamus. The cellular mechanisms mediating the rapid effects of 17β-estradiol on memory, including activation of intracellular signaling cascades and epigenetic processes, are discussed. Finally, the review concludes by comparing pre- and post-acquisition findings and effects of 17β-estradiol and ER agonists in different brain regions. This article is protected by copyright. All rights reserved.
Facebook likes*
News coverage*
SC clicks
Estrogen, Amygdala, Estrogen receptor, Hippocampus, Limbic system, Cerebrum, Hypothalamus, Brain
MeSH headings
comments powered by Disqus

* Data courtesy of