Discover the most talked about and latest scientific content & concepts.

Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation

OPEN Proceedings of the National Academy of Sciences of the United States of America | 18 Jan 2017

R Georgescu, Z Yuan, L Bai, R de Luna Almeida Santos, J Sun, D Zhang, O Yurieva, H Li and ME O'Donnell
The eukaryotic CMG (Cdc45, Mcm2-7, GINS) helicase consists of the Mcm2-7 hexameric ring along with five accessory factors. The Mcm2-7 heterohexamer, like other hexameric helicases, is shaped like a ring with two tiers, an N-tier ring composed of the N-terminal domains, and a C-tier of C-terminal domains; the C-tier contains the motor. In principle, either tier could translocate ahead of the other during movement on DNA. We have used cryo-EM single-particle 3D reconstruction to solve the structure of CMG in complex with a DNA fork. The duplex stem penetrates into the central channel of the N-tier and the unwound leading single-strand DNA traverses the channel through the N-tier into the C-tier motor, 5'-3' through CMG. Therefore, the N-tier ring is pushed ahead by the C-tier ring during CMG translocation, opposite the currently accepted polarity. The polarity of the N-tier ahead of the C-tier places the leading Pol ε below CMG and Pol α-primase at the top of CMG at the replication fork. Surprisingly, the new N-tier to C-tier polarity of translocation reveals an unforeseen quality-control mechanism at the origin. Thus, upon assembly of head-to-head CMGs that encircle double-stranded DNA at the origin, the two CMGs must pass one another to leave the origin and both must remodel onto opposite strands of single-stranded DNA to do so. We propose that head-to-head motors may generate energy that underlies initial melting at the origin.
Facebook likes*
News coverage*
SC clicks
Protein, Gene, Transcription, Molecular motor, Base pair, Genetics, DNA replication, DNA
MeSH headings
comments powered by Disqus

* Data courtesy of