SciCombinator

Discover the most talked about and latest scientific content & concepts.

T Taniguchi, N Ashizawa, K Matsumoto and T Iwanaga
Abstract
Our goal was to establish a model for the evaluation of the effects of uricosuric agents and to clarify the underlying mechanism(s). The effects of a uricosuric agent co-treated with pyrazinamide, an anti-tubercular agent, on urate handling were examined in rats. Furthermore, the effects of uricosuric agents on urate uptake were evaluated using the vesicles of rat renal brush-border membrane. Treatment with probenecid, at a dose of 100 mg/kg, significantly increased the urinary urate to creatinine ratio (UUA/UCRE) in pyrazinamide-treated rats although the same treatment did not produce any uricosuric effects in intact rats. In this model, the urinary excretion of pyrazinecarboxylic acid (PZA), an active metabolite of pyrazinamide, was decreased by probenecid and indicated an inverse correlation between urinary excretion of urate and PZA. Furthermore, in the examination using FYU-981, a potent uricosuric agent, a more than 10-fold leftward shift of the dose-response relationship of the uricosuric effect was observed in pyrazinamide-treated rats when compared with intact rats. In the in vitro study, the treatment of the vesicles of rat renal brush-border membrane with PZA produced an increased urate uptake, which was inhibited by uricosuric agents. The pyrazinamide-treated model used in the present study seems to be valuable for the evaluation of uricosurics because of its higher sensitivity to these drugs when compared to intact rats, and this is probably due to the enhanced urate reabsorption accompanied with trans-stimulated PZA transport at the renal brush-border membrane.
Tweets*
2
Facebook likes*
0
Reddit*
0
News coverage*
0
Blogs*
0
SC clicks
1
Concepts
Hypouricemia, Hyperuricosuria, Probenecid, In vitro, Gout, Uricosuric, Pharmacology, Hyperuricemia
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com