SciCombinator

Discover the most talked about and latest scientific content & concepts.

R Macrez, MC Ortega, I Bardou, A Mehra, A Fournier, SM Van der Pol, B Haelewyn, E Maubert, F Lesept, A Chevilley, F de Castro, HE De Vries, D Vivien, D Clemente and F Docagne
Abstract
Multiple sclerosis is among the most common causes of neurological disability in young adults. Here we provide the preclinical proof of concept of the benefit of a novel strategy of treatment for multiple sclerosis targeting neuroendothelial N-methyl-D-aspartate glutamate receptors. We designed a monoclonal antibody against N-methyl-D-aspartate receptors, which targets a regulatory site of the GluN1 subunit of N-methyl-D-aspartate receptor sensitive to the protease tissue plasminogen activator. This antibody reverted the effect of tissue plasminogen activator on N-methyl-D-aspartate receptor function without affecting basal N-methyl-D-aspartate receptor activity (n = 21, P < 0.01). This antibody bound N-methyl-D-aspartate receptors on the luminal surface of neurovascular endothelium in human tissues and in mouse, at the vicinity of tight junctions of the blood-spinal cord barrier. Noteworthy, it reduced human leucocyte transmigration in an in vitro model of the blood-brain barrier (n = 12, P < 0.05). When injected during the effector phase of MOG-induced experimental autoimmune encephalomyelitis (n = 24), it blocked the progression of neurological impairments, reducing cumulative clinical score (P < 0.001) and mean peak score (P < 0.001). This effect was observed in wild-type animals but not in tissue plasminogen activator knock-out animals (n = 10). This therapeutic effect was associated to a preservation of the blood-spinal cord barrier (n = 6, P < 0.001), leading to reduced leucocyte infiltration (n = 6, P < 0.001). Overall, this study unveils a critical function of endothelial N-methyl-D-aspartate receptor in multiple sclerosis, and highlights the therapeutic potential of strategies targeting the protease-regulated site of N-methyl-D-aspartate receptor.
Tweets*
17
Facebook likes*
1
Reddit*
0
News coverage*
14
Blogs*
1
SC clicks
0
Concepts
Neurology, Plasmin, Ligand-gated ion channel, Immune system, Protein, Multiple sclerosis, Tissue plasminogen activator, NMDA receptor
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com