SciCombinator

Discover the most talked about and latest scientific content & concepts.

Y Zhang, TP Basel, BR Gautam, X Yang, DJ Mascaro, F Liu and ZV Vardeny
Abstract
Recently, much effort has been devoted to improve the efficiency of organic photovoltaic solar cells based on blends of donors and acceptors molecules in bulk heterojunction architecture. One of the major losses in organic photovoltaic devices has been recombination of polaron pairs at the donor-acceptor domain interfaces. Here, we present a novel method to suppress polaron pair recombination at the donor-acceptor domain interfaces and thus improve the organic photovoltaic solar cell efficiency, by doping the device active layer with spin ½ radical galvinoxyl. At an optimal doping level of 3 wt%, the efficiency of a standard poly(3-hexylthiophene)/1-(3-(methoxycarbonyl)propyl)-1-1-phenyl)(6,6)C(61) solar cell improves by 18%. A spin-flip mechanism is proposed and supported by magneto-photocurrent measurements, as well as by density functional theory calculations in which polaron pair recombination rate is suppressed by resonant exchange interaction between the spin ½ radicals and charged acceptors, which convert the polaron pair spin state from singlet to triplet.
Tweets*
0
Facebook likes*
0
Reddit*
0
News coverage*
0
Blogs*
0
SC clicks
3
Concepts
Density functional theory, Bacteria, Photovoltaic array, Pauli exclusion principle, DNA, P-n junction, Photovoltaics, Solar cell
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com