Discover the most talked about and latest scientific content & concepts.

Y Kim, S Park and SH Yook
Previous studies showed that the meme popularity distribution is described by a heavy-tailed distribution or a power-law, which is a characteristic feature of the criticality. Here, we study the origin of the criticality on non-growing and growing networks based on the competition induced criticality model. From the direct Mote Carlo simulations and the exact mapping into the position dependent biased random walk (PDBRW), we find that the meme popularity distribution satisfies a very robust power- law with exponent α = 3/2 if there is an innovation process. On the other hand, if there is no innovation, then we find that the meme popularity distribution is bounded and highly skewed for early transient time periods, while it satisfies a power-law with exponent α ≠ 3/2 for intermediate time periods. The exact mapping into PDBRW clearly shows that the balance between the creation of new memes by the innovation process and the extinction of old memes is the key factor for the criticality. We confirm that the balance for the criticality sustains for relatively small innovation rate. Therefore, the innovation processes with significantly influential memes should be the simple and fundamental processes which cause the critical distribution of the meme popularity in real social networks.
Facebook likes*
News coverage*
SC clicks
Economics, Probability theory, Critical thinking, Susan Blackmore, Memetics, Meme, Complex number, Innovation
MeSH headings
comments powered by Disqus

* Data courtesy of