Discover the most talked about and latest scientific content & concepts.

A Davison, GS McDowell, JM Holden, HF Johnson, GD Koutsovoulos, MM Liu, P Hulpiau, F Van Roy, CM Wade, R Banerjee, F Yang, S Chiba, JW Davey, DJ Jackson, M Levin and ML Blaxter
While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signaling of Nodal, downstream of symmetry breaking, may be an ancestral feature of the Bilateria [1, 2]. Here, we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or overexpression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models [3-5], we discovered asymmetric gene expression in 2- and 4-cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro [6, 7], together these results are consistent with the view that animals with diverse body plans may derive their asymmetries from the same intracellular chiral elements [8].
Facebook likes*
News coverage*
SC clicks
Gastropod shell, Symmetry, DNA, Gene, Animal, Snail, Mollusca, Gene expression
MeSH headings
comments powered by Disqus

* Data courtesy of