SciCombinator

Discover the most talked about and latest scientific content & concepts.

L Liu, Z Zhou, S Huang, Y Guo, Y Fan, J Zhang, J Zhang, M Fu and YE Chen
Abstract
Endothelial activation characterized by the expression of multiple chemokines and adhesive molecules is a critical initial step of vascular inflammation which results in recruitment of leukocytes into sub-endothelial layer of vascular wall and triggers vascular inflammatory diseases such as atherosclerosis. Although inhibiting the endothelial inflammation has already been well recognized as a therapeutic strategy in vascular inflammatory diseases, the therapeutic targets are still elusive. In the present study we found that Zc3h12c, a recently discovered CCCH-zinc finger containing protein, significantly inhibited endothelial cell inflammatory response in vitro. Overexpression of Zc3h12c significantly attenuated tumor necrosis factor a (TNFa) induced expression of chemokines and adhesive molecules, and thus reduced monocyte adherence to human umbilical vein endothelial cells (HUVECs). Conversely, siRNA-mediated knocking down of Zc3h12c increased TNFα-induced expression of chemokines and adhesive molecules in HUVECs. Furthermore, forced expression of Zc3h12c decreased TNFα-induced IKKa/b and IkBa phosphorylation and p65 nuclear translocation, suggesting that Zc3h12c exerted the anti-inflammatory function probably by suppressing nuclear factor-kB (NF-kB) pathway. Thus, Zc3h12c is an endogenous inhibitor of TNFα-induced inflammatory signaling in HUVECs and might be a therapeutic target in vascular inflammatory diseases.
Tweets*
1
Facebook likes*
0
Reddit*
0
News coverage*
0
Blogs*
0
SC clicks
1
Concepts
C-reactive protein, Immune system, Anti-inflammatory, Endothelium, Tumor necrosis factor-alpha, Blood vessel, Atherosclerosis, Inflammation
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com