Discover the most talked about and latest scientific content & concepts.

K Wolkenstein, H Sun, H Falk and C Griesinger
Complete structural elucidation of natural products is often challenging due to structural complexity and limited availability. This is true for present-day secondary metabolites, but even more for exceptionally preserved secondary metabolites of ancient organisms that potentially provide insights into the evolutionary history of natural products. Here we report the full structure and absolute configuration of the borolithochromes, enigmatic boron-containing pigments from a Jurassic putative red alga, from samples of less than 50 µg using microcryoprobe NMR, CD spectroscopy, and DFT calculations, and reveal their polyke-tide origin. The pigments are identified as spiroborates with two pentacyclic sec-butyl-trihydroxy-methyl-benzo[gh]tetraphen-one ligands and less substituted deriva-tives. The configuration of the sec-butyl group is found to be (S). Because the exceptional benzo[gh]tetraphene scaffold is otherwise only observed in the recently discovered polyke-tide clostrubin from a present-day Clostridium bacterium, the Jurassic borolithochromes now can be unambiguously linked to the modern polyketide, providing evidence that the fossil pigments are almost originally preserved secondary metabolites and suggesting that the pigments in fact may have been produced by an ancient bacterium. The borolithochromes differ fundamentally from previously described boronated polyketides and represent the first boronated aromatic polyketides found so far. Our results demonstrate the potential of microcryoprobe NMR in the analysis of previously little-explored secondary metabolites from ancient organisms and reveal the evolutionary significance of clostrubin-type polyketides.
Facebook likes*
News coverage*
SC clicks
Organism, Cyanobacteria, Bacteria, DNA, Photosynthesis, Fungus, Evolution, Metabolism
MeSH headings
comments powered by Disqus

* Data courtesy of