SciCombinator

Discover the most talked about and latest scientific content & concepts.

Abstract
Behavioral output of neural networks depends on a delicate balance between excitatory and inhibitory synaptic connections. However, it is not known whether network formation and stability is constrained by the sign of synaptic connections between neurons within the network. Here we show that switching the sign of a synapse within a neural circuit can reverse the behavioral output. The inhibitory tyramine-gated chloride channel, LGC-55, induces head relaxation and inhibits forward locomotion during the Caenorhabditis elegans escape response. We switched the ion selectivity of an inhibitory LGC-55 anion channel to an excitatory LGC-55 cation channel. The engineered cation channel is properly trafficked in the native neural circuit and results in behavioral responses that are opposite to those produced by activation of the LGC-55 anion channel. Our findings indicate that switches in ion selectivity of ligand-gated ion channels (LGICs) do not affect network connectivity or stability and may provide an evolutionary and a synthetic mechanism to change behavior.
Tweets*
50
Facebook likes*
1
Reddit*
0
News coverage*
6
Blogs*
3
SC clicks
1
Concepts
Electrophysiology, Ion, Caenorhabditis elegans, Ion channels, Neuron, Nervous system, Action potential, Membrane potential
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com