SciCombinator

Discover the most talked about and latest scientific content & concepts.

M Kaltenbrunner, G Adam, ED Głowacki, M Drack, R Schwödiauer, L Leonat, DH Apaydin, H Groiss, MC Scharber, MS White, NS Sariciftci and S Bauer
Abstract
Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g(-1). To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition-from solution at low temperature-of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles-from airplanes to quadcopters and weather balloons-for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.
Tweets*
42
Facebook likes*
0
Reddit*
0
News coverage*
3
Blogs*
0
SC clicks
0
Concepts
Solar energy, Diode, Flexible electronics, Solar tracker, Photovoltaic array, Photovoltaic module, Photovoltaics, Solar cell
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com