SciCombinator

Discover the most talked about and latest scientific content & concepts.

Y Diao, Y Zhou, T Kurosawa, L Shaw, C Wang, S Park, Y Guo, JA Reinspach, K Gu, X Gu, BC Tee, C Pang, H Yan, D Zhao, MF Toney, SC Mannsfeld and Z Bao
Abstract
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.
Tweets*
1
Facebook likes*
0
Reddit*
0
News coverage*
3
Blogs*
0
SC clicks
0
Concepts
P-n junction, Fluid dynamics, IBM, Fill factor, Direct current, Photovoltaics, Solar cells, Solar cell
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com