Discover the most talked about and latest scientific content & concepts.

Syringe-injectable electronics

Nature nanotechnology | 9 Jun 2015

J Liu, TM Fu, Z Cheng, G Hong, T Zhou, L Jin, M Duvvuri, Z Jiang, P Kruskal, C Xie, Z Suo, Y Fang and CM Lieber
Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.
Facebook likes*
News coverage*
SC clicks
Minimally invasive, Brain, Hypodermic needle, Electronic engineering
MeSH headings
comments powered by Disqus

* Data courtesy of