Discover the most talked about and latest scientific content & concepts.

D Villaño, C Vilaplana, S Medina, R Cejuela-Anta, JM Martínez-Sanz, P Gil, HG Genieser, F Ferreres and A Gil-Izquierdo
The oxidized nucleoside 8-hydroxy-2'-deoxyguanosine has been widely studied as a marker of DNA oxidation; however, data on the occurrence in plasma of other metabolites related to DNA damage are scarce. We have applied an improved, sensitive, robust, and reliable method, involving solid phase extraction and UHPLC-MS/MS, to the precise quantitation of seven metabolites in the plasma of 15 elite triathletes after a 2-week training program. All compounds eluted in the first 1.6 min with limits of detection and quantification ranging between 0.001 and 0.3 ng.mL(-1) and 0.009 and 0.6 ng.mL(-1), respectively. Four compounds were detected in plasma: guanosine- 3'-5'-cyclic monophosphate , 8-hydroxyguanine , 8-hydroxy-2'-deoxyguanosine, and 8-nitroguanosine. After two weeks of training, 8-hydroxyguanine exhibited the highest increase (from 0.031 ± 0.008 nM to 0.036 ± 0.012 nM) (p < 0.05), which could be related to enhanced activity of DNA repairing enzymes that excise this oxidized base. Increases in guanosine- 3'-5'-cyclic monophosphate and 8-hydroxy-2'-deoxyguanosine were also observed. In contrast, levels of 8-nitroguanosine (p < 0.05) were significantly reduced, which might be a protective measure as this compound strongly stimulates the generation of superoxide radicals and its excess is related to pathologies such as microbial (viral) infections and other inflammatory and degenerative disorders. . The results obtained indicate an induced adaptive response to the increased oxidative stress related to the elite training and point to the benefits associated with regular exercise.
Facebook likes*
News coverage*
SC clicks
Nitrogen, Electrochemistry, Nicotinamide adenine dinucleotide, Radical, DNA repair, Photosynthesis, Adenosine triphosphate, Redox
MeSH headings
comments powered by Disqus

* Data courtesy of