SciCombinator

Discover the most talked about and latest scientific content & concepts.

M Bariana, MS Aw, M Kurkuri and D Losic
Abstract
Diatomaceous earth (DE), or diatomite silica microparticles originated from fossilized diatoms are a potential substitute for its silica-based synthetic counterparts to address limitations in conventional drug delivery. This study presents the impact of engineered surface chemistry of DE microparticles on their drug loading and release properties. Surface modifications with four silanes, including 3-aminopropyltriethoxy silane (APTES), methoxy-poly-(ethylene-glycol)-silane (mPEG-silane), 7-octadecyltrichlorosilane (OTS), 3-(glycidyloxypropyl)trimethoxysilane (GPTMS) and two phosphonic acids, such as 2-carboxyethyl-phosphonic acid (2 CEPA) and 16-phosphono-hexadecanoic acid (16 PHA) were explored in order to tune drug loading and release characteristics of water insoluble (indomethacin) and water soluble drugs (gentamicin). Successful grafting of these functional groups with different interfacial properties was confirmed using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. Thermogravimetric analysis (TGA) was applied to determine the amount of loaded drugs and UV-spectrophotometry to analyse in-vitro drug release from modified DE substrates. Differences in drug release time (13-26 days) and loading capacity (14-24%) were observed depending on functional groups on the surface of DE microparticles. It was found that hydrophilic surfaces, due to the presence of polar carboxyl, amine or hydrolysed epoxy group, favor extended release of indomethacin, while the hydrophobic DE surface modified by organic hydrocarbons gives a better sustained release profile for gentamicin. This work demonstrates that by changing surface functionalities on DE microparticles, it is possible to tune their drug loading and release characteristics for both hydrophobic and hydrophilic drugs and therefore achieve optimal drug delivery performance.
Tweets*
0
Facebook likes*
0
Reddit*
0
News coverage*
0
Blogs*
0
SC clicks
1
Concepts
Amine, Amide, Functional group, X-ray photoelectron spectroscopy, Fourier transform spectroscopy, Diatom, Solubility, Spectroscopy
MeSH headings
-
comments powered by Disqus

* Data courtesy of Altmetric.com