Discover the most talked about and latest scientific content & concepts.

Acoustic cavitation plays an important role in sonochemical processes and the rate of sonochemical reaction is influenced by sonication parameters. There are several methods to evaluate cavitation activity such as chemical dosimetry. In this study, to comparison between iodide dosimetry and terephthalic acid dosimetry, efficacy of sonication parameters in reactive radical production has been considered by iodide and terephthalic acid dosimetries. For this purpose, efficacy of different exposure parameters on cavitations production by 1 MHz ultrasound has been studied. The absorbance of KI dosimeter was measured by spectrophotometer and the fluorescence of terephthalic acid dosimeter was measured using spectrofluorometer after sonication. The result of experiments related to sonication time and intensity showed that with increasing time of sonication or intensity, the absorbance is increased. It has been shown that the absorbance for continuous mode is remarkably higher than for pulsing mode (p-value < 0.05). Also results show that with increasing the duty cycles of pulsed field, the inertial cavitation activity is increased. With compensation of sonication time or intensity in different duty cycles, no significant absorbance difference were observed unless 20% duty cycle. A significant correlation between the absorbance and fluorescence intensities (count) at different intensity (R = 0.971), different sonication time (R = 0.999) and different duty cycle (R = 0.967) were observed (p-value < 0.05). It is concluded that the sonication parameters having important influences on reactive radical production. These results suggest that there is a correlation between iodide dosimetry and terephthalic acid dosimetry to examine the acoustic cavitation activity in ultrasound field.
Facebook likes*
News coverage*
SC clicks
Light, Spectroscopy, Sonoporation, Sonochemistry, Hertz, Sound, Cavitation, Ultrasound
MeSH headings
comments powered by Disqus

* Data courtesy of