Discover the most talked about and latest scientific content & concepts.

C Koutsari, AH Ali, MS Mundi and MD Jensen
Accurate measures of plasma FA oxidation can improve our understanding of diseases characterized by impaired FA oxidation. We describe and compare the 24 h time-courses of FA oxidation using bolus injections of [1-(14)C]palmitate versus [9,10-(3)H]palmitate under postabsorptive, postprandial, and walking conditions. Fifty-one men and 95 premenopausal women participated in one condition (postabsorptive, postprandial, or walking), one tracer ((14)C- or (3)H-labeled), and an acetate or palmitate study. Groups were matched for sex, age, and body mass index (BMI). At 24 h, cumulative [(3)H]acetate recovery as (3)H(2)O was 80 ± 6%, 78 ± 2%, and 81 ± 6% in the postabsorptive, postprandial, and walking conditions, respectively (not significant). Model-predicted maximum [1-(14)C]acetate recovery as expired (14)CO(2) was 59 ± 12%, 52 ± 8%, and 65 ± 10% in the postabsorptive, postprandial, and walking condition, respectively (one way ANOVA, P = 0.12). When corrected with the corresponding acetate recovery factors, 24 h time-courses of FFA oxidation were similar between [1-(14)C]palmitate and [9,10-(3)H]palmitate in all three conditions. In contrast to previous meal ingestion studies, an acetate-hydrogen recovery factor was needed to achieve comparable oxidation rates using an intravenous bolus of [(3)H]palmitate. In conclusion, intravenous boluses of [9,10-(3)H]palmitate versus [1-(14)C]palmitate gave similar estimates of 24 h cumulative FFA oxidation in age-, sex- and BMI-matched individuals.
Facebook likes*
News coverage*
SC clicks
Palmitic acid, Fatty acid synthase, Essential fatty acid, Hydrogen, One-way ANOVA, Fatty acid, Body mass index, Fatty acid metabolism
MeSH headings
comments powered by Disqus

* Data courtesy of