SciCombinator

Discover the most talked about and latest scientific content & concepts.

Self-assembly of amorphous calcium carbonate microlens arrays.

OPEN Nature communications | 8 Mar 2012

K Lee, W Wagermaier, A Masic, KP Kommareddy, M Bennet, I Manjubala, SW Lee, SB Park, H Cölfen and P Fratzl
Abstract
Biological materials are often based on simple constituents and grown by the principle of self-assembly under ambient conditions. In particular, biomineralization approaches exploit efficient pathways of inorganic material synthesis. There is still a large gap between the complexity of natural systems and the practical utilization of bioinspired formation mechanisms. Here we describe a simple self-assembly route leading to a CaCO(3) microlens array, somewhat reminiscent of the brittlestars' microlenses, with uniform size and focal length, by using a minimum number of components and equipment at ambient conditions. The formation mechanism of the amorphous CaCO(3) microlens arrays was elucidated by confocal Raman spectroscopic imaging to be a two-step growth process mediated by the organic surfactant. CaCO(3) microlens arrays are easy to fabricate, biocompatible and functional in amorphous or more stable crystalline forms. This shows that advanced optical materials can be generated by a simple mineral precipitation.
Tweets*
1
Facebook likes*
0
Reddit*
0
News coverage*
0
Blogs*
1
SC clicks
1
Concepts
Mineral, Glass, Solid, Metaphysics, Optics, Lens, Microlens, Calcium carbonate
MeSH headings
Actins, Biocompatible Materials, Calcium, Calcium Carbonate, Cells, Cultured, Lenses, Minerals, Spectrum Analysis, Raman
comments powered by Disqus

* Data courtesy of Altmetric.com